Eigenvalue separation in some random matrix models
نویسندگان
چکیده
منابع مشابه
Eigenvalue Separation in Some Random Matrix Models
The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...
متن کاملSome Unusual Matrix Eigenvalue Problems
We survey some unusual eigenvalue problems arising in different applications. We show that all these problems can be cast as problems of estimating quadratic forms. Numerical algorithms based on the well-known Gauss-type quadrature rules and Lanczos process are reviewed for computing these quadratic forms. These algorithms reference the matrix in question only through a matrix-vector product op...
متن کاملon some bayesian statistical models in actuarial science with emphasis on claim count
چکیده ندارد.
15 صفحه اولGlassy random matrix models.
This paper discusses random matrix models that exhibit the unusual phenomena of having multiple solutions at the same point in phase space. These matrix models have gaps in their spectrum or density of eigenvalues. The free energy and certain correlation functions of these models show differences for the different solutions. This study presents evidence for the presence of multiple solutions bo...
متن کاملPower-law eigenvalue density, scaling, and critical random-matrix ensembles.
We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2009
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.3081391